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Quantization of Underdamped, Critically Damped,
and Overdamped Electric Circuits
With a Power Source
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We have investigated the quantum mechanical effect of the underdamped, critically
damped, and overdamped electric circuits with a power source. The charge of the un-
derdamped circuit oscillates while those of the critically damped and overdamped ones
don’t. The wave function of the system of overdamped circuit represented parabolic
cylinder function while underdamped circuit was represented by well-known Hermite
polynomial. The eigenvalues of underdamped circuit is discrete while those of the crit-
ically damped and overdamped ones are given as continuously.

KEY WORDS: RLC linear circuit; quantization; invariant operator; unitary
transformation.

1. INTRODUCTION

The investigation of the harmonic oscillator has been an important task since
the early history of physics (Moshinsky and Smirnov (1996), because the most
general aspect of physics is vibration that we meet in everyday life. The most stan-
dard example of a dissipative system may be a damped harmonic oscillator which
is described by a Hamiltonian that is explicitly time-dependent. The quantum me-
chanical system of damped harmonic oscillator has been of interest in the literature
since Kanai (1948) discussed it classically. Since the introduction of a dynami-
cal invariant operator by Lewis (1967) in 1967, the systematic investigation of
quantum mechanical time-dependent harmonic oscillator has been facilitated. The
main idea to solve the quantum mechanical solution of the time-dependent system
is that the wave function is the same as the eigenstate of the dynamical invari-
ant operator, except for some time-dependent phase factor (Lewis and Riesenfeld,
1969). The quantum state of damped harmonic oscillator has been studied with
(Ohet al., 1989; Umet al., 1986a,b, 1987, 1996, 1997) and without (Colegrave and
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Abdalla, 1981; Gisin, 1981; Umet al., 1997, 2001a,b; Yeon and Um, 1992) driving
force.

The oscillation of charge inRLClinear circuit may be a good example of the
damped harmonic oscillator. The miniaturization of integrated circuits and com-
ponents towards atomic scale dimensions demanded the development of quantum
theory on a mesoscopic circuit, since the charge carriers such as electrons ex-
hibit quantum mechanical properties while the application of classical mechan-
ics is invalid (Buot, 1993). Nowadays, because of the development of advanced
lithography techniques and crystal growth which enable elaborate experiments,
the mesoscopic physics and nanoelectronics have rapidly progressed. The gener-
ation of squeezing effects for a time-dependentLC circuit with a power source
has been investigated (Baseia and De Brito, 1993). The effect of circuit param-
eters on ferroresonantRLC circuit are studied by Lambaet al. (1998). With the
jump on this trend, a quantization for anRLC linear circuit with a power source
has been tried in the literatures (Chenet al., 1995; Louisell, 1973; Zhanget al.,
1998). They obtained the quantum fluctuations of charge and current in the vac-
uum state and investigated the fluctuations of the charge, the magnetic flux, and
the energy of the circuit. Taking account of this direction, we are motivated to
study the quantum-mechanical effects of the underdamped, critically damped, and
overdamped electric circuits with a power source.

2. HAMILTONIAN AND INVARIANT OPERATOR

By applying Kirchhoff’s law, we can obtain the classical equation of motion
for charges inRLC linear circuit with a power source as

d2q

dt2
+ R

L

dq

dt
+ 1

LC
q = E(t)

L
, (1)

whereq is charge,R resistance of the circuit,L inductance,C capacitance, and
E(t) time-dependent power source. We can let the chargeq(t) as the analog of the
coordinate and the currentp(t) as the analog of the momentum. Using Hamilton’s
equation of motion, we can derive the corresponding Hamiltonian:

Ĥ = e−(R/L)t p̂2

2L
+ e(R/L)t 1

2

[
1

C
q̂2− 2E(t)q̂

]
. (2)

To quantize the circuit, we may further pursue the analog betweenRLC linear
circuit and mechanical oscillator. The chargeq̂ and the current̂p are hermitian
operators that satisfy the commutation relation

[q̂, p̂] = i h. (3)

To investigate the quantum mechanical solution of the problem, it is very conve-
nient to introduce an invariant operator. By virtue of its definition, the invariant
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operatorÎ must satisfy the following relation:

dÎ

dt
= ∂ Î

∂t
+ 1

i h
[ Î , Ĥ ] = 0. (4)

With the substitution of Eq. (2) into Eq. (4), we obtain that

Î = 1

2

{
1

L
e−(R/L)t

[
p̂− pp(t)+ 1

2
R e(R/L)t (q̂ − qp(t))

]2

+LÄ2 e(R/L)t (q̂ − qp(t))2

}
, (5)

whereÄ is given by

Ä =
(

1

LC
− R2

4L2

)1/2

. (6)

andqp and pp are the particular solutions of the classical equation of motion in
coordinate and momentum space, respectively. Since Eq. (5) is somewhat compli-
cated, let us transform it to more simple form with unitary operatorÛ as

Î ′ = Û Î Û †. (7)

In the above equation, we chooseÛ as

Û = Û3Û2Û1, (8)

where

Û1 = exp(iqp(t) p̂/h) exp(−i pp(t)q̂/h), (9)

Û2 = exp[i R e(R/L)t q̂2/(4h)], (10)

Û3 = exp[−i (R/L)t(q̂ p̂+ p̂q̂)/(4h)]. (11)

Then, Eq. (5) can be transformed to

Î ′ = p̂2

2L
+ 1

2
LÄ2q̂2. (12)

The Eq. (12) is not only simply compared to untransformed one but also time-
independent so that we can easily deal with it.

3. UNDERDAMPED CIRCUIT

Let us consider an underdamped circuit with 1/C > R2/(4L). The eigenvalue
equation forÎ ′ can be written as

Î ′|φ′n(t)〉 = λn|φ′n(t)〉. (13)
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By operating with〈q̂| from left to both sides of Eq. (13), we can obtain theq̂-space
eigenstate as

〈
q̂ | φ′n(t)

〉 = 4

√
LÄ

hπ

1√
2nn!

Hn

(√
LÄ

h
q̂

)
exp

(
− LÄ

2h
q̂2

)
, (14)

whereHn is nth-order Hermite polynomial. The eigenstate〈q̂ | φn(t)〉 of the un-
transformed invariant operator is related to the transformed one by the following
equation:

〈q̂ | φn(t)〉 = Û †〈q̂ | φ′n(t)〉. (15)

Using Eqs. (8) and (14), Eq. (15) becomes

〈q̂ | φn(t)〉 = 4

√
LÄ

hπ

1√
2nn!

Hn

[√
LÄ

h
eR/(2L)t (q̂ − qp(t))

]
eipp(t)q̂/h

× exp

[
R

4L
t − L

2h

(
Ä+ i R

2L

)
e(RL)t (q̂ − qp(t))2

]
. (16)

The wave functions are different from the eigenstate of invariant operator by some
time-dependent phase factor, exp[i γn(t)] (Lewis and Riesenfeld, 1969).

〈q̂ | ψn(t)〉 = 〈q̂ | φn(t)〉 exp[i γn(t)]. (17)

By substituting Eq. (17) into Schr¨odinger equation, we obtain the relation that

hγ̇n(t) =
〈
φn(t)

∣∣∣∣(i h
∂

∂t
− Ĥ

)∣∣∣∣φn(t)

〉
. (18)

The right hand side of the above equation can be represented as〈
φ′n(t)

∣∣∣∣Û(i h
∂

∂t
− Ĥ

)
Û †
∣∣∣∣φ′n(t)

〉
=
〈
φ′n(t)

∣∣∣∣[i h
∂

∂t
−
(

p̂2

2L
+ 1

2
LÄ2q̂2

)]∣∣∣∣φ′n(t)

〉
− Hp(qp(t), pp(t), t)

= −hÄ

(
n+ 1

2

)
− Hp(qp(t), pp(t), t), (19)

where

Hp(qp(t), Pp(t), t) = e−(R/L)t
p2

p

2L
+ e(R/L)t 1

2

[
1

C
q2

p − 2E(t)qp

]
. (20)

By inserting Eq. (19) into Eq. (18), we can obtain theγn as

γn = −Ät

(
n+ 1

2

)
− 1

h

∫ t

0
Hp
(
qp(t ′), pp(t ′), t ′

)
dt′. (21)
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Using Eqs. (16) and (21), the Eq. (17) can be rewritten as

〈q̂ | ψn(t)〉 = 4

√
LÄ

hπ

1√
2nn!

Hn

[√
LÄ

h
eR/(2L)t (q̂ − qp(t))

]
eipp(t)q̂/h

× exp

[
Rt

4L
− L

2h

(
Ä+ i R

2L

)
e(R/L)t (q̂ − qp(t))2

]
× exp

[
−iÄt

(
n+ 1

2

)
− i

h

∫ t

0
Hp
(
qp(t ′), pp(t ′), t ′

)
dt′
]
.

(22)

This is the full wave function that satisfies the Schr¨odinger equation. The eigen-
value is given discretely because the system is oscillatory and bounded.

The classical energy of the system is given by

E = 1

2
Lq̇2+ 1

2C
q2. (23)

And, the quantum mechanical energy can be defined as

En = e−(2R/L)t 1

2L

〈
ψn(t)

∣∣ p̂2
∣∣ψn(t)

〉+ 1

2C

〈
ψn(t)

∣∣q̂2
∣∣ψn(t)

〉
. (24)

Using Eq. (22), Eq. (24) can be calculated as

En = e−(R/L)t h
1

ÄLC

(
n+ 1

2

)
+ Ep(qp(t), q̇p(t)), (25)

where

Ep(qp(t), q̇p(t)) = 1

2
Lq̇2

p(t)+ 1

2C
q2

p(t), (26)

q̇p(t) = pp(t)

L
e−(R/L)t . (27)

In Eq. (25), the first term disappears as time goes by while the second term remains.

4. CRITICALLY DAMPED CIRCUIT

Now, we consider critically damped circuit that the condition is given by
1/C= R2/(4L). Then, Eq. (12) is simplified to

Î ′ = p̂2

2L
. (28)

The Eq. (28) is same with the Hamiltonian of free particle. Let us write the eigen-
value equation of Eq. (28) as

Î ′|φ′(t)〉 = λ|φ′(t)〉. (29)
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Then, theq̂-space eigenstate can be calculated as

〈q̂ | φ′(t)〉 = C1 exp

(
i

h

√
2Lλ q̂

)
+ C2 exp

(
− i

h

√
2Lλ q̂

)
, (30)

whereC1 andC2 are integral constants. The eigenstate of the untransformed in-
variant operator is given by

〈q̂ | φ(t)〉 = Û †〈q̂ | φ′(t)〉

= exp

[
− i R

4h
e(R/L)t (q̂ − qp(t))2

]
eipp(t)q̂/h eR/(4L)t

×
[
C1 exp

(
i

h

√
2Lλ eR/(2L)t (q̂ − qp(t))

)
×C2 exp

(
− i

h

√
2Lλ eR/(2L)t (q̂ − qp(t))

)]
. (31)

We can denote the phase factor of the wave function as exp [i γ (t)]:

〈q̂ | ψ(t)〉 = 〈q̂ | φ(t)〉 exp[i γ (t)]. (32)

By substitution of Eq. (32) into Schr¨odinger equation, we obtain that

hγ̇ (t) =
〈
φ(t)

∣∣∣∣(i h
∂

∂t
− Ĥ

)∣∣∣∣φ(t)

〉
. (33)

The right hand side of Eq. (33) can be calculated as〈
φ′(t)

∣∣∣∣Û(i h
∂

∂t
− Ĥ

)
Û †
∣∣∣∣φ′(t)〉

=
〈
φ′(t)

∣∣∣∣(i h
∂

∂t
− p̂2

2L

)∣∣∣∣φ′(t)〉− Hp(qp(t), pp(t), t)

= −λ− Hp(qp(t), pp(t), t). (34)

From Eqs. (33) and (34), we can obtainγ (t) as

γ (t) = −λ
h

t − 1

h

∫ t

0
Hp
(
qp(t)′, pp(t ′), t ′

)
dt′. (35)

Substitution of Eqs. (31) and (35) into Eq. (32), we can right the full wave fun-
ction as

〈q̂ | ψ(t)〉 = exp

[
− i R

4h
e(R/L)t (q̂ − qp(t))2

]
eipp(t)q̂/h eR/(4L)t

×
[
C1 exp

(
i

h

√
2Lλ eR/(2L)t (q̂ − qp(t))

)
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+C2 exp

(
− i

h

√
2Lλ eR/(2L)t (q̂ − qp(t))

)]
× exp

[
− i

λ

h
t − i

h

∫ t

0
Hp(qp(t ′), pp(t ′), t ′) dt′

]
. (36)

Note that the wave function, Eq. (36), is same with that of unbounded one and the
eigenvalue is given continuously.

5. OVERDAMPED CIRCUIT

Let us now consider for critically damped circuit that the condition is given
by 1/C < R2/(4L). Then, Eq. (12) can be rewritten as

Î ′ = p̂2

2L
− 1

2
LÄ̃2q̂2, (37)

where

Ä̃2 ≡ R2

4L2
− 1

LC
= −Ä2 > 0. (38)

Note that, in this case,̃Ä2 is always positive. The Eq. (37) is same with the
Hamiltonian of the harmonic parabola potential system. The eigenvalue equation
for Î ′ may be written as

Î ′|φ′(t)〉 = λ|φ′(t)〉. (39)

Substitution of Eq. (37) into Eq. (39) and operating〈q̂| from left to both sides of
the equation, we obtain that

∂2〈q̂ | φ′(t)〉
∂ Q̂2

+
(∏

+1

4
Q̂2

)
〈q̂ | φ′(t)〉 = 0, (40)

where

Q̂ =
√

2LÄ̃

h
q̂, (41)

∏
= λ

hÄ̃
. (42)

The solution of Eq. (40) is given by

〈q̂ | φ′(t)〉 = C′1D−i
∏−1/2

(
1+ i√

2
Q̂

)
+ C′2D−i

∏−1/2

(
− 1+ i√

2
Q̂

)
, (43)

whereDν(z) is parabolic cylinder function which is defined as (Erd´ely, 1953a)

Dν(z) = 2(ν−1)/2 exp(−z2/4)z9(1/2− ν/2, 3/2;z2/2),

9(a, c; y) = 1

0(a)

∫ ∞
0

e−yt ta−1(1+ t)c−a−1 dt. (44)
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In fact, Dν(z) is a solution of the following differential equation (Erd´ely, 1953b)

d2φ

dz2
+
(
ν + 1

2
− 1

4
z2

)
φ = 0. (45)

The eigenstate of the untransformed invariant operator is given by

〈q̂ | φ(t)〉 = Û †〈q̂ | φ′(t)〉

= exp

[
− i R

4h
e(R/L)t (q̂ − qp(t))2

]
eipp(t)q̂/h eR/(4L)t

×
[
C′1D−i

∏−1/2

(
1+ i√

2
eR/(2L)t Q̂′

)
+C′2D−i

∏−1/2

(
− 1+ i√

2
eR/(2L)t Q̂′

)]
, (46)

where

Q̂′ =
√

2LÄ̃

h
(q − qp(t)). (47)

The wave function again can be written as

〈q̂ | ψ(t)〉 = 〈q̂ | φ(t)〉 exp[i γ (t)]. (48)

By the same process with the previous case, we obtainγ (t) as

γ (t) = −λ
h

t − 1

h

∫ t

0
Hp(qp(t ′), pp(t ′), t ′) dt′. (49)

By substituting Eqs. (46) and (49) into Eq. (48), we can obtain that

〈q̂ | ψ(t)〉 = exp

[
− i R

4h
e(R/L)t (q̂ − qp(t))2

]
eipp(t)q̂/h eR/(4L)t

[
C′1D−i

∏−1/2(
1+ i√

2
eR/(2L)t Q̂′

)
+ C′2D−i

∏−1/2

(
− 1+ i√

2
eR/(2L)t Q̂′

)]
× exp

[
− iλ

h
t − i

h

∫ t

0
Hp(qp(t ′), pp(t ′), t ′) dt′

]
. (50)

The wave function Eq. (50) is also continuous as that of critically damped one.

6. SUMMARY

Using the advantage of invariant operator, we derived the quantum mechani-
cal solution of theRLC linear circuit. We made use of the advantage of invariant
operator to derive the solution of Schr¨odinger equation for underdamped, critically
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damped, and overdamped circuits. The transformed invariant operator expressed
with modified frequencyÄ, and same with the Hamiltonian of standard harmonic
oscillator for underdamped circuit, of free particle for critically damped one, and of
the harmonic parabola potential system for overdamped one. The wave function of
the system of underdamped circuit was represented by well-known Hermite poly-
nomial. On the other hand, the wave function of overdamped circuit represented
parabolic cylinder function. The charge of the underdamped circuit oscillates while
those of the critically damped and overdamped ones don’t. The eigenvalues of un-
derdamped circuit is discrete while those of the critically damped and overdamped
ones are given as continuously.
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